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Abstract. It is shown that an (anti-)self-dual homogeneous vacuum gluon field appears in a natural way
within the problem of calculation of the QCD partition function in the form of Euclidean functional integral
with periodic boundary conditions. There is no violation of cluster property within this formulation, nor
are parity, color and rotational symmetries broken explicitly. The massless limit of the product of the quark
masses and condensates, mf 〈ψ̄fψf 〉, is calculated to all loop orders. This quantity does not vanish and is
proportional to the gluon condensate appearing due to the nonzero strength of the vacuum gluon field.
We conclude that the gluon condensate can be considered as an order parameter both for confinement and
chiral symmetry breaking.

I Introduction

The purpose of this paper is to find a regular procedure for
construction of the Euclidean QCD generating functional
under assumption that the homogeneous (anti-)self-dual
gluon field realizes an absolute minimum of the QCD effec-
tive action, and, on the basis of this procedure, to discuss
a relation of the homogeneous (anti-)self-dual gluon field
to the issues of confinement and chiral symmetry breaking
in QCD.

The physical picture of nonperturbative QCD vacuum
realised with the (anti-)self-dual homogeneous gluon field
has become prominent since the early eighties, when Leut-
wyler demonstrated the stability of this gluon configura-
tion against local quantum fluctuations and noticed, that
this field could be related to the problems of confinement
and chiral symmetry breaking [1,2]. Elizalde and Soto,
and many other authors have obtained strong evidence
that this field could be a true minimum of the QCD ef-
fective potential (see [3,4] and references therein). Mani-
festations of this gluon configuration in the spectrum and
weak decays of light mesons, their excited states, heavy
quarkonia and heavy-light mesons were studied in recent
papers [5,6]. The vacuum field under consideration pro-
duces several qualitative regimes for masses and decay
constants which are completely consistent with experi-
mental data. Namely, the masses of light pseudoscalar and
vector mesons are strongly split, orbital and radial exci-
tations of light mesons show Regge behaviour, the mass
of heavy quarkonium tends to be equal to sum of the
masses of quarks, the heavy-light meson mass approaches

the mass of the heavy quarks, and the weak decay con-
stant for pseudoscalar heavy-light mesons has asymptotic
behaviour 1/√mQ. Moreover, scalar and axial mesons are
absent in the spectrum as simple qq̄ states, but appear
in the super-fine structure of orbital excitations of vector
mesons. Quantitatively, the masses and decay constants
of mesons from all different regions of the spectrum are
described within ten percent inaccuracy. These different
phenomena are displayed with the minimal set of parame-
ters: gauge coupling constant, strength of the vacuum field
and the quark masses.

This short review underlines that a series of results
concerning both the QCD ground state and the meson
phenomenology does support the field under consideration
as a possible agent for confinement and chiral (flavour)
symmetry breaking. However, there are three essential
gaps that hinder justification of this physical picture. Reg-
ular formulation of the problem about QCD ground state,
realized by the (anti) -self-dual homogeneous field, is
missed. There is no proof that this field minimizes the
QCD effective potential. Most of the results concerning
the field under consideration are obtained within the one-
loop approximation. In this paper, we attempt to fill in
the first and third gaps.

We show that the analogy between Euclidean func-
tional integrals and the partition function of statistical
systems in the thermodynamic limit leads to the Euclidean
QCD generating functional including the vacuum field un-
der consideration in the form, that does not show an ex-
plicit violation of the space-time and color symmetries and
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ensures the cluster decomposition property of the correla-
tors of quantum fields.

Using this representation, we investigate the massless
limit of the renormalization group invariant quantity
m〈ψ̄ψ〉B which is a product of the quark mass and quark
condensate in the presence of vacuum (anti-)self-dual ho-
mogeneous gluon field. An important result of this work
is the formula

NF∑
f=1

lim
mf→0

mf 〈ψ̄fψf 〉B = −NF
B2

2π2 , (1)

where B is the strength of the vacuum field (gauge cou-
pling constant is included into B). Equation (1) is valid
to all loop orders. Zero modes of Dirac operator in the
presence of the (anti-)self-dual gluon field and the ho-
mogeneity of this field are the key reasons for relation
(1). This equation shows a non-Goldstone mechanism of
SUL(NF )×SUR(NF ) symmetry breaking, which appears
as a secondary effect of spontaneous violation of parity.
At the same time, since the parity is not broken explic-
itly, the UA(1) symmetry is preserved by the vacuum field
under consideration. Furthermore, the homogeneity and
(anti-)self-duality of the field leads to the confinement of
quarks and most of gluon degrees of freedom, which can
be seen as the absence of poles in propagators (in the
momentum representation). Moreover, a homogeneity of
the vacuum field means, that at zero and nonzero field
we deal with two different phases (in the sense of statisti-
cal mechanics) and the gluon condensate plays the role of
order parameter in the similar fashion as the scalar field
condensate does in the Higgs model.

It is notable that the present paper is closely motivated
by our recent studies [6] of the meson properties induced
by the vacuum field under consideration. Chiral symmetry
breaking due to the zero modes appears to be a dominat-
ing factor in forming the masses and decay constants of
light mesons, while confinement (the propagators are en-
tire functions) is responsible for Regge trajectories, heavy
quarkonia and heavy-light mesons.

II Generating functional

First of all, we need to explain what is hidden behind the
symbol 〈. . .〉B. In other words, what is the formal state-
ment of the problem about QCD ground state, within
which this field appears in a natural and self-consistent
way?

The usual statement of the problem about vacuum
(phase) structure of quantum field systems is based on
the analogy between the functional integrals in Euclidean
QFT and the partition function of quantum statistical sys-
tems in the infinite volume (thermodynamic) limit. There-
fore, we need an appropriate representation for the QCD
partition function in the infinite volume limit. The most
subtle point is a choice of boundary conditions for the
functional space of integration. The standard way is to in-
troduce a large space-time box, to impose periodic bound-

ary conditions on the fields in the box and then to study
the infinite volume limit. We follow just this prescription.

It should be noted, that condition for the fields to van-
ish at infinity, which is normal for QFT in the perturbative
regime, is not appropriate, since the translation invariant
fields are excluded ad hoc. There is no chance to get insight
into the critical phenomena of long range correlations. The
instanton-like formulation of the problem – to calculate a
transition amplitude from the field configuration A given
at Euclidean time τ1 to another configuration A′ at time
τ2 [2] – is not suitable either. In this case, the homoge-
neous field comes through the boundary conditions, which
results in a hard violation of the cluster property and ex-
plicit breakdown of rotational and color symmetries and
parity.

Let us start with pure gluodynamics. A naive repre-
sentation for partition function looks like

Z ∼
∫
FL,β

DA exp
{∫

V

d4xLYM(A)
}
, (2)

where V is a large Euclidean volume, L and β−1 = T
are the space box size and the temperature. The func-
tional space FL,β contains gauge fields Aµ satisfying peri-
odic boundary condition. Notice, that translation invari-
ant fields, in particular the (anti-)self-dual homogeneous
field

Bµ(x) =
1
2
nBµνxν , n = λ3 sin ζ + λ8 cos ζ, (3)

B̃µν = ±Bµν , BµρBρν = −δµνB2, B2 = const,

belong to FLβ . In case (3), an arbitrary translation

Bµ(x+ ξ) = Bµ(x) + ∂µω(x, ξ), ω = xνBν(ξ), (4)

can be compensated by a suitable gauge transformation.
Field configuration (3) is not a dynamical variable in

the sense, that its equation of motion does not contain
any derivatives, but is just a constraint. This field must
be integrated out if one looks for an integral representa-
tion for partition function which corresponds to an ac-
tual ground state of the system. However, this integra-
tion should be based on resolving the constraint which
takes into account all quantum corrections coming from
the dynamical modes of the gauge fields. The quantum
constraint can have solutions that are neither visible at
the classical level nor within the perturbation theory. At
the same time, these nontrivial solutions for the constant
fields (condensates) govern critical phenomena in systems
with the infinite number of degrees of freedom. One can
easily illustrate this statement by the phase transitions in
the models with φ4 and Yukawa interactions (e.g., see [7]
and references therein).

The integral over the homogeneous field can be sepa-
rated in (2) with a simultaneous fixing of a gauge of dy-
namical fields by means of the Faddev-Popov trick:

1 =

∞∫
0

dB

∫
ΣB

dσB Φ[A, B]
∫
F̄

DA

∫
Dω

×δ [Aω −Aω −Bω] δ [∇(Bω)Aω] , (5)
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where the space F̄ does not contain the nondynamical
mode (3), B is the homogeneous field strength, ∇µ(B) =
∂µ − iBµ(x) denotes a covariant derivative in the adjoint
representation. The coupling constant g is included into
the field Bµ.

The measure dσB is defined as∫
ΣB

dσB =
1

(4π)2
∑
±

2π∫
0

dϕ

π∫
0

dθ sin θ

2π∫
0

dζ = 1. (6)

Definition (6) corresponds to integration over the spatial
(spherical) angles (ϕ, θ) of the field (3) and angle ζ which
defines its orientation in color space (in the diagonal rep-
resentation of matrix n in (3)). The sign ‘±’ corresponds
to summation of the self- and anti-self-dual configurations.
The final representation for Z is then

Z = lim
Λ→∞

RΛN

∫
ΣB

dσB

∞∫
0

dB

∫
F̄

DA

×∆FP[B,A]δ [∇(B)A] exp
{∫

V

d4xLYM(A+B)
}
,

(7)

where ∆FP[B,A] is the Faddeev-Popov determinant for
the background gauge condition∇(B)A = 0. An appropri-
ate regularization RΛ of ultraviolet divergences and renor-
malization prescription are implied in (7). By definition,
an integral over the fields A gives rise to an effective po-
tential of the field Bµ. The background field does not af-
fect general renormalizability of the theory [8,9], and we
rewrite Z in the form

Z = N ′
∫
ΣB

dσB

∞∫
0

dB exp
{−V Ueff [B2; g(µ), µ, β]

}
, (8)

where µ is the renormalization point. As has been men-
tioned, the background field in (8) includes the coupling
constant B ≡ gB. In the background gauge, the compo-
sition gB is RG-invariant [9]. Furthermore, the effective
potential is invariant under gauge and parity transfor-
mations, and space rotations (this also follows from the
general background field method). Thus, we arrive at the
expression

Z = N ′
∞∫
0

dB exp
{−V Ueff [B2; g(µ), µ, β]

}
.

If the effective potential has a minimum at nonzero field
strength B = B(g(µ), µ, β), then, in the infinite volume
limit, the saddle-point method gives

Z = exp {−V F [g(µ), µ, β]} ,
F = Ueff [B2(g(µ), µ, β); g(µ), µ, β] < 0.

The free energy density F is RG-invariant. For zero tem-
perature, B is nothing other than the RG-invariant com-
bination of the running coupling constant g(µ) and the

renormalization point µ, hence:

lim
β→∞

B2 = CB Λ4
QCD, lim

β→∞
F = −CFΛ4

QCD, (9)

where CB and CF are positive numbers, and

Λ2
QCD = µ2 exp


g(µ)∫

dg

β(g)

 .

These equations link the strength of the vacuum field with
the “fundamental scale” ΛQCD (see also [2,4,10]).

Now we can represent the partition function Z in the
form of functional integral over the quantum fluctuation
fields A, that does not contain the translation invariant
mode:

Z = lim
Λ→∞

RΛN

∫
ΣB

dσB
∫
F̄

DA ∆FP[B, A]δ [∇(B)A]

× exp
{∫

V

d4xLYM(A+ B)
}
. (10)

Equation (10) gives the representation that we are look-
ing for. It is based on the strong but single assumption
that the (anti-)self-dual field corresponds to the global
minimum of the QCD effective action. Lattice calculation
of the effective potential for different translation invari-
ant gluon fields seems to be the most direct way to verify
this assumption. The study of the effective potential for
the pure chromomagnetic homogeneous field in the three-
dimensional SU(2) lattice gauge theory gives an example
of the lattice approach to the problem. The first evidence
from lattice simulations was obtained of the existance of
a nontrivial minimum in the effective potential [11]. How-
ever, the (anti-)self-dual field in (3 + 1) dimensions is a
particularly interesting configuration due to other reasons
to be discussed below (see also [1,2]).

On the basis of representation (10), the QCD gener-
ating functional for correlation functions in the infinite
volume and at zero temperature has to be defined as

ZB[J, η, η̄] =

lim
Λ→∞

RΛNB
∫
ΣB

dσB
∫
F̄

DµA(A,B)
∫
G

∏
f

DψfDψ̄f

exp
{∫

d4xψ̄f (x)
[
i∇̂ −mf + gÂ

]
ψf (x)

+i
∫
d4x

[
JA+ η̄fψf + ψ̄fηf

]}
,

DµA(A,B) = DA∆FP[B, A]δ [∇(B)A] (11)

× exp
{∫

d4xLYM[A+ B]
}
,

Â = γµAµ, ∇̂ = γµ∇µ, ∇µ = ∂µ − iBµ.
The constant NB provides the standard normalization
ZB[0, 0, 0] = 1. The functional space F̄ contains the gauge
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fields vanishing at infinity. The change of boundary con-
ditions (vanishing fields instead of periodic ones) is unim-
portant for physics, since quantum fluctuationsA does not
contain translation invariant modes. We have also added
massive quarks. The fermionic functional integral spans
the Grassmann algebra G of square integrable fields. To
be more precise, we will define this integral via a decom-
position of the fields ψ̄ and ψ over the eigenmodes ψn of
the Dirac operator in the presence of vacuum gluon field
B (an anti-hermitian representation for the γ-matrices in
Euclidean space is used)

−i∇̂ψn(x) = iλnψn(x). (12)

As a matter of fact, this definition of the fermionic integral
implies, that the ground state of the system is governed
by the vacuum field B, and the interaction ψ̄Âψ of quarks
with the quantum gauge field A has to be treated as per-
turbation. Now, let us seek insight into the properties of
representation (11).

III Parametrization, cluster property,
symmetries

The generating functional (11) contains the intrinsic di-
mensionful quantity B (see also (9)), which provides the
natural reference scale for running quark masses m̄f (µ)
and gauge coupling constant ᾱs(µ). Therefore, the strength
of the vacuum field B, the quark masses and coupling con-
stant at the scale µ =

√B can be considered as the phys-
ical (intrinsic) parameters of QCD in the representation
(11). Values of the parameters can be extracted from the
analysis of hadron spectrum (e.g., see [6]).

Correlation functions for the local or nonlocal opera-
tors Oj [A,ψ, ψ̄] composed of the quantum fields are given
by the standard formula

〈O1[A,ψ, ψ̄] . . .On[A,ψ, ψ̄]〉B =
(
O1

[
δ

iδJ
,
δ

iδη̄
,
δ

iδη

]
. . .

. . . On

[
δ

iδJ
,
δ

iδη̄
,
δ

iδη

]
ZB[J, η, η̄]

)
J=η=η̄=0

. (13)

It should be stressed that A ∈ F̄ , and the functional
space F̄ does not contain the homogeneous fields. The
gauge field A in (13) and (11), being a quantum fluctu-
ation under the background field, vanishes at the space-
time infinity. The connected Green’s functions, given by
the derivatives of WB = − lnZB[J, η, η̄] go to zero at the
infinity as well. Thus, the correlators are defined by (13) as
the averages of the products of quantum field fluctuations
over the physical vacuum state, and ensure the cluster de-
composition property. In particular, the correlator of the
pseudoscalar winding number density at the points x and
y tends to zero in the limit |x− y| → ∞:

〈φ(x)φ(y)〉B = 〈φ(x)〉B〈φ(y)〉B ≡ 0,

φ(x) = TrFµν(x)F̃µν(x), (14)
Fµν = ∇µAν −∇νAµ + ig[Aµ, Aν ].

Due to the integration over the angular variables ΣB and
summation of the self- and anti-self-dual configurations,
the parity, rotational and color symmetries are not broken
explicitly. The correlators depend on the strength B of the
vacuum field but not on its direction, which is random
and not observable. They have the same tensor structure
as in the absence of the vacuum field. At the same time,
violation of the symmetries is seen in the integrand of
(11), which is an indication of spontaneous breaking of the
above-mentioned symmetries. Thus, we meet an unusual
mechanism of SSB due to the condensation of the vector
bosons.

The order parameter for the phase with a nonzero vac-
uum homogeneous field is obvious. This is the lowest non-
vanishing gluon condensate, defined as

〈[∂νAa
µ(x)− ∂µAa

ν(x)
]2〉 = 4B2 + (pert.corr.). (15)

Here A = (A+B) ∈ F , and 〈. . .〉 denotes an averaging by
means of Eq. (7). However, any of the correlators

〈O1[A] · ... · On[A]〉
=
∫
ΣB

dσBO1[B] · ... · On[B] + ..., (16)

which contains a constant part, can be taken as order pa-
rameter.

It should be stressed, that the cluster decomposition
is a property of correlators of quantum fluctuations. The
correlators of quantum fluctuations under the background
field defined by (13) and (11) ensure this property. The
correlators (15) and (16) are defined in a different way.
The field A is a sum of the vacuum field B and the quan-
tum fluctuation field A (A = B + A). They contain a
constant part and act as order parameters concerning the
long-range correlations in the QCD vacuum. This is in a
complete analogy with the scalar field condensate in the
Higgs model.

IV Chiral symmetries

Spontaneous violation of parity should influence the chiral
symmetries UA(1) and SUL(NF )×SUR(NF ). Due to sum-
ming the self- and anti-self-dual configurations in (11), the
vacuum expectation value of a pseudo-tensor operator is
identically equal to zero. In particular, UA(1) symmetry
is not broken in the sense that

〈∂µψ̄f (x)γ5γµψf (x)〉B ≡ 0.

An explicit violation of parity as in the instanton θ-vacu-
um is needed.

To study the flavour chiral symmetry SUL(NF ) ×
SUR(NF ) let us consider the massless limit of composi-
tion of the quark masses and quark condensates:

NF∑
f=1

mf 〈ψ̄f (x)ψf (x)〉B

=
NF∑
f=1

mf

[
δ

iδηf (x)
δ

iδη̄f (x)
ZB[η, η̄, J ]

]
η̄=η=J=0

.(17)
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The nontrivial point in the calculation of this quantity
consists in the following. In the massless limit mf → 0,
the divergent contributions O(m−k

f ), with k being some
positive integer, can appear potentially at any loop order.
This means, that the perturbation decomposition can fail
in the massless limit. In this case, the divergent terms
have to be summed to all loop orders. This infrared prob-
lem comes from the zero modes ψ0 of (12) with λ0 = 0
existing due to an (anti-) self-duality of the vacuum field.
It should be noted, that this problem arises both for the
homogeneous and instanton fields. However, the crucial
difference between the homogeneous field and the instan-
ton θ-vacuum consists in the normalization of the generat-
ing functional. Unlike the instanton case (e.g., see [12,13]),
the normalization constant NB in (11) corresponds to the
nonperturbative vacuum and contains the contribution of
the fermion zero modes. Therefore, in the massless limit,
no problem arises with the fermion determinant coming
from the integral in (11); it is cancelled by the normaliza-
tion constant NB.

Now we will show that a singularity 1/m exists in the
lowest one-loop diagram for the quark condensate but does
not appear in higher orders. This allows one to calculate
the massless limit of (17) explicitly and to prove relation
(1). The most direct way consists in the following.

First of all, notice that (17) can be rewritten in the
equivalent form

NF∑
f=1

mf 〈ψ̄f (x)ψf (x)〉B

= −Z−1
B (m)

NF∑
f=1

lim
V→∞

V −1mf
d

dmf
ZB(m), (18)

ZB(m) =

lim
Λ→∞

RΛNB(µ)
∫
ΣB

dσB
∫
F̄

DµA(A,B)
∫
G

∏
f

DψfDψ̄f

exp
{∫

d4xψ̄f (x)
[
i∇̂ −mf + gÂ

]
ψf (x)

}
, (19)

where the normalization constant NB(µ) is taken so that
ZB(µ) = 1 for some µ 6= 0. The LHS of (18) does not
depend on NB(µ), but this normalization provides us with
an appropriately defined integral under the derivative.

Consider for a moment the one-flavour case. An ex-
tension to NF > 1 is straightforward. Formal integration
over the quark field in the partition function gives

ZB(m) = lim
Λ→∞

RΛNB(µ)
∫
ΣB

dσB
∫
F̄

DµA(A,B)

×det
[
−i∇̂+m− gÂ

]
. (20)

Our definition of the fermion integral via the eigenmodes
of Dirac operator means the determinant in (20) and its
derivative in (18) are defined as

det
[
−i∇̂+m− gÂ

]
= det

[
−i∇̂+m

]
det

[
1− gÂS

]
,

(21)
d

dm
det

[
−i∇̂+m− gÂ

]
= det

[
−i∇̂+m

]
det

[
1− gÂS

]
×
[
T̃rS +

d

dm
T̃r ln(1− gÂS)

]
, (22)

where the trace T̃r includes the space-time integration,
and the quark propagator S(x, y) satisfies the equation(

i∇̂x −m
)
S(x, y) = −δ(x− y). (23)

The term T̃rS in (22) is the lowest order contribution
to the quark condensate. Higher perturbation corrections
come from the quark loops contained in the logarithmic
term in (22). The decisive point is that these quark loops
are regular in the massless limit, while the lowest term is
singular:

lim
m→0

T̃r ln(1− gÂS) ∼ 1 +O(m),

lim
m→0

T̃rS ∼ 1
m

+O(1). (24)

It is notable, that, in another context, a regularity of the
simplest two-gluon loop was demonstrated by Flory [14].

Using the standard representation for Green’s function
in terms of the matrix elements of the projection operators
Pn

S(x, y) =
∞∑
n=0

Pn(x, y)
m+ iλn

,

one can separate the contribution of the zero eigenmodes
and normal modes to the propagator

S(x, y) = S′(x, y) + S0(x, y),

S′(x, y) =
→
i∇̂x ∆(x, y)P± +∆(x, y)

←
i∇̂y P∓

+O(m), (25)
→
∇=

→
∂ −iB,

←
∇=

←
∂ +iB,

S0(x, y) = P0(x, y)/m. (26)

Representation (25) for the normal mode propagator was
obtained by Brown et al. [15] for an arbitrary (anti-)self-
dual background field (see also [16] and Appendix). Here
∆(x, y) = f(x, y)/4π2(x− y)2 is the scalar massless prop-
agator in the background field (3), n is a diagonal matrix
(see (3)), and P± = (1 ± γ5)/2. The projector onto the
zero mode subspace

P0 =
n2B2

4π2 f(x, y)P∓Σ∓, (27)

Σ± =
1
2

(1±Σjbj) , Σi =
1
2
εijkσjk,

σjk = [γj , γk]/2i, (28)
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bj = Bj/B, Bi = −1
2
εijkBjk, i, j, k = 1, 2, 3

f(x, y) = exp
{
−1

4

√
n2B(x− y)2 +

i

2
nxµBµνyν

}
,

(29)∫
d4zP0(x, z)P0(z, y) = P0(x, y),

is defined by the square integrable solution

ψ0(x, x0) =
n2B2

4π2 uf(x, x0) (30)

of the equation (12) with λ0 = 0. Details of calculation of
ψ0 can be found in Appendix. The spinor u in (30) is an
eigenvector of the matrices Σjbj and γ5:

Σjbjψ0 = ∓ψ0, γ5ψ0 = ∓ψ0,

which is the well-known [12,15,16] property of zero modes
to be left-handed in a self-dual field and right-handed in
an anti-self-dual field. As a result, the projector

P0(x, y) =
∫
d4x0ψ0(x, x0)ψ

†
0(y, x0) (31)

contains the projection matrices P− (self-dual field) or P+
(anti-self-dual field) and Σ− (n > 0) or Σ+ (n < 0). The
matrix Σ+ (Σ−) can be seen as the projector onto the
quark state with the spin orientated along (against) the
chromomagnetic field Bj .

The space-time point x0 describes a position of the
fermion “pseudoparticle” ψ0(x, x0). We see that the zero
eigenvalue is infinitely degenerate which is a manifestation
of the above-mentioned invariance of the vacuum field un-
der translations and simultaneous gauge transformations
(see Appendix). This feature, as well as the functional
form of fermion zero mode (29), (30), is very similar to the
properties of Leutwyler’s chromons [1,2] which are gluon
zero modes in the same background field.

Now we can return to (22) and represent the logarith-
mic term in the form

T̃r ln(1− gÂS) = −
∞∑
k=1

gk

k
T̃r
[
Â(S0 + S′)

]k
. (32)

Then one makes use of (26) and (27) to notice that

S0(x, y)γµAµ(y)S0(y, z) ≡ 0 (33)

due to the projectors P∓ in S0 and commutativity of the
matrix P∓ with Σ− and Σ+. Therefore, all the terms in
(32), which contain the block S0γµAµS0, vanish. Further-
more, any two propagators S0 ∼ P∓ in the rest of terms
of (32) are separated by an odd number of vertices γA
and propagators S′ ∼ (γ + O(m)). Hence, the terms in
(32) with nonzero trace of γ-matrices contain at least one
quark mass m in the numerator for each m in the denom-
inator. In other words, there is always an odd number of
γ-matrices between two chiral projectors P∓ in the sin-
gular terms, and the quark loops are finite in the limit
m→ 0, as is pointed out in (24).

Finally, taking into account equations (18), (20), (22)
and (26)-(29), we arrive at

lim
m→0

m〈ψ̄ψ〉B = − lim
m→0

mV −1T̃rS

= −V −1
∫
V

d4xTrP0(x, x) = − B2

2π2 (34)

for one flavour. For several flavours one gets formula (1).
Thus, the gluon condensate (15) can be considered as an
order parameter for the flavour chiral symmetry breaking.

The nonzero massless limit of m〈ψ̄ψ〉B indicates a non-
Goldstone mechanism of symmetry breaking. From our
point of view, breakdown of the chiral symmetry appears
here as a secondary effect of spontaneous violation of par-
ity, which is a discrete symmetry. Since zero modes (30)
are right-handed in the anti-self-dual field and left-handed
in the self-dual field, hence in both terms (±) of generat-
ing functional (11) the chiral group is reduced to one of
the flavour subgroups

SUL(NF )× SUR(NF ) −→ SUL(NF ) (or SUR(NF ))

for the zero mode component of the fermion fields

χ0(x) =
∫
d4zq0(z)ψ0(x, z), χ̄0(x) =

∫
d4zq̄0(z)ψ

†
0(x, z),

where (q0, q̄0) are the basic elements of the zero mode sub-
space of the Grassmann algebra G in (11). As has been
mentioned, due to the translation invariance of the vac-
uum field, there is a continuum of fermion zero modes,
and their condensation in the infinite volume produces a
very strong effect. Consequences of this effect in meson
phenomenology are discussed in [6]. In particular, a con-
tribution of zero modes to the quark propagator splits the
masses of pseudoscalar (π, K) and vector (ρ, K∗) mesons
and leads to correct values of weak decay constants of the
pseudoscalar mesons.

V Confinement

Now we will comment briefly on the quark confinement
produced by the field under consideration. The quark prop-
agator S being the solution to (23) (see Appendix and [5,
6,17]) can be written in the form

S(x, y) = e
i
2nxµBµνyνH(x− y),

H(z) =
(
m+ i∇̂

) B√n2

8π2

1∫
0

dt

(1− t)2

× exp
{
−
√
n2Bz2(1 + t)/4(1− t)

}
×
[
P±tm

2/2B
√
n2

+ P∓Σ+t
m2/2B

√
n2+n/

√
n2

+P∓Σ−tm
2/2B

√
n2−n/

√
n2
]
. (35)

Fourier transform of the translation invariant part H is
an entire analytical function in the complex momentum



G.V. Efimov, S.N. Nedelko: (Anti-)self-dual homogeneous vacuum gluon field 349

plane. This means that there are no poles corresponding
to free quarks. The other side of this peculiarity is that
the Dirac equation for massive quarks in the presence of
the background field (3)(

i∇̂x −mf

)
ψ(x) = 0

has only the trivial solution ψ ≡ 0. Therefore, one has
no appropriate field to construct asymptotic free states
for quarks. In this sense, the quarks cannot exist as free
particles but can propagate as virtual objects. The charac-
teristic scale of propagation of these quark “virtons” is de-
termined by the strength B of the vacuum gluon field. This
situation can be seen as the quark confinement, for which
gluon condensate B2 plays the role of an order parameter.
Meantime, nothing preserves these virtons to form a color-
less composite particle by means of gluon exchange [5,6].
A colorless bound state does not feel the confining vacuum
field and can be observable. A mathematically consistent
treatment of this physical concept, especially a reasonable
solution of the bound state problem in terms of composite
fields, requires an application of the methods of nonlo-
cal quantum field theory [5,6,17,18]. As is shown in [5,6],
above picture of confinement provides Regge spectrum of
orbital meson excitations.

VI Discussion

In conclusion we would like to mention the “flaws” in this
picture. The problem about the minimum of the effective
potential is not solved. The lattice calculation of the ef-
fective potential for different translation invariant gluon
configurations could play the decisive role. To our knowl-
edge, nobody has performed lattice calculations for QCD
or pure Yang-Mills theory in the presence of (anti-)self-
dual homogeneous field. There are only few calculations
for the pure chromomagnetic field ([11] and references
theirin). Besides confined modes of the gluon field (in the
same sense as for the quarks), free gluons appear to be al-
lowed. At first sight, the gluons, longitudinal in the color
space with respect to the vacuum field, seem to be not con-
fined [2,5]. Solution of the UA(1) problem, which is missed
in our consideration, can come from the investigation of
the local instanton-like (anti-)self-dual deformations of the
homogeneous background field - chromons [2,10]. In the
meantime, these “flaws” are problems for further consid-
eration.

Appendix A: Zero mode

Here we will find the explicit form of the solution ψ0 to
(12) corresponding to the zero eigenvalue. Below we use
the following notation (also, see (3))

∇µ(x) = ∂ − iBµ(x), ∇∗µ(x) = ∂ + iBµ(x)

Bµ(x) =
1
2
nBµνxν , Bij = −εijkBk,

Bj4 = ±Bj , bj = Bj/B,

σµν =
1
2i

[γµ, γν ], Σi =
1
2
εijkσjk, Σ± =

1
2

(1±Σjbj) ,

P∓ =
1
2

(1∓ γ5) . (A1)

The matrix Σ+ (Σ−) are the projector onto the quark
state with the spin orientated along (against) the chromo-
magnetic field Bj . The simplest way to prove (27) and (30)
consists in the following. Notice, that [∇µ(x),∇∗ν(x)] = 0.
Therefore, if φ0(x) is a zero mode of the operator ∇̂µ(x),
then for any y ∈ R4 the field

ψ0(x, y) = exp
{−yµ∇∗µ(x)

}
φ0(x) (A2)

is a zero mode either. The zero eigenvalue is strongly de-
generate, which is a manifestation of an invariance of the
background field under translations and appropriate gauge
transformations (see (4)). It is notable that any nonzero
eigenvalue of ∇̂µ(x) is also degenerate. Furthermore, using
the identity σ4j = −γ5Σj , the algebra of γ-matrices and
an (anti-)self-duality of the tensor Bµν , one can get

σµνBµν = −4BP∓(Σ+ −Σ−), (A3)

γµBµνxν · σαβBαβ = 4iB2γµxµP∓. (A4)

Here P− (P+) relates to a self-dual (anti-self-dual) field.
Substituting (A3) to (A4) and comparing the result with
(A4), one arrives at the identities

iγµBµνxνP∓Σ+ = BγµxµP∓Σ+,

iγµBµνxνP∓Σ− = −BγµxµP∓Σ−. (A5)

Using these identities and taking into account (A2), one
can check that

∇̂(x)P∓Σ∓ exp
{
−1

4

√
n2B(x− y)2 +

i

2
nxµBµνyν

}
= 0,

(A6)

where Σ− (Σ+) corresponds to n > 0 (n < 0) with n
being an element of the diagonal matrix given in (3). Thus,
the squire integrable solution for the zero mode of Dirac
operator in the homogeneous (anti)-self-dual field has the
form of (30).

Equations (25) and (27) can also be obtained by a
straightforward calculation of the quark propagator. Sub-
stituting S = exp(inxµBµνyν/2)H(x−y) to (23), one gets
the following representation for the function H

H(z) =
(
i∇̂+m

)(
−∇2 +m2 − 1

2
nσαβBαβ

)−1

δ(z).

(A7)

Using the identity (A3), we rewrite (A7) in the form

H(z) =
(
i∇̂+m

) [ P±
−∇2 +m2 +

P∓Σ+

−∇2 +m2 + 2nB

+
P∓Σ−

−∇2 +m2 − 2nB

]
δ(z). (A8)
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The Schwinger proper time method gives:

1
−∇2 +M

δ(z) =
B
√
n2

16π2

∞∫
0

ds

sinh2(s)

× exp
(
−Ms/B

√
n2 − z2B

√
n2 coth(s)/4

)
.

Substitution of this formula to (A8) and the subsequent
change of variable s = − ln t/2 lead to the quark propa-
gator (35). At last, in order to get the leading terms (25)
and (27) of the quark propagator in the massless limit one
needs to use (A6) and the identities

→
∇̂ P∓Σ∓ exp

{
−
√
n2Bz2(1 + t)/4(1− t)

}
= t exp

{
−
√
n2Bz2(1 + t)/4(1− t)

} ←
∇̂ P∓Σ∓

→
∇̂ P∓Σ± exp

{
−
√
n2Bz2(1 + t)/4(1− t)

}
= t−1 exp

{
−
√
n2Bz2(1 + t)/4(1− t)

} ←
∇̂ P∓Σ±

in (35). Here, the upper (lower) sign in Σ∓ and Σ± cor-
responds to n > 0 (n < 0).
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